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A B S T R A C T

Through two controlled experiments, including a pie menu study and a target acquisition study, this paper
investigates children’s performance on mid-air gesture interactions in different spatial constraints (i.e., in
different orientations/distances), as well as the age effect on such interaction scenarios. The first experiment
recorded children’s speeds and accuracies following certain directions under menus with different numbers of
items, while the second evaluated the speed–accuracy trade-off (SAT) of children’s arm movements. We also
compared performance differences between two age-related groups (i.e., 6–8 years old and 9–12 years old).
Based on these experiments, we propose an improved design for UI menus based on mid-air gesture interaction
for children. The improved design provides suggestions for setting appropriate directions and difficulty indexes,
which makes it much easier and quicker for children to use the menus with mid-air interaction.
1. Introduction

With the rapid development of low-cost gesture tracking systems,
the research of mid-air interaction as a new class of natural user
interface (NUI) has become a hot spot in recent years. In some scenarios
like large screen interaction and VR interaction, gesture is a natural
and intuitive way of interpersonal communication, rich in meaning
and convenience (Nacenta et al., 2013; Pereira et al., 2015). Moreover,
compared with traditional mouse-keyboard interaction, gesture is con-
sidered a more natural and easier interaction technique (Abdul-Rashid
et al., 2017). As an innate human skill, gesture requires less cognitive
load on the user (Carvalho et al., 2018). Therefore, we believe that
mid-air gesture interaction is more appropriate for children as it is more
intuitive and natural. Body gesture interaction is generally regarded as
the next generation of computer mouse (Norman, 2010; Pang et al.,
2014). Recent gesture recognition sensors, such as Microsoft Kinect and
Leap Motion, allow interaction with pie menus, particularly in gaming
applications such as Far Cry 6 (see Fig. 1-a) and Counter-Strike (see
Fig. 1-b). By using body gesture sensing devices, users can use hand
movements in different orientations to acquire items in pie menus or
any targets in other forms.

A rising research trend on mid-air interaction is to explore its
applications for special user groups, such as the elderly (Muangmoon
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et al., 2016), children (Lyu et al., 2017), or psychiatric patients (Ruiz-
Rodriguez et al., 2019). As one of the largest potential user groups
of mid-air gesture interaction systems, children are important study
subjects for understanding user abilities and user preferences for mid-
air interactions. However, unlike the stable performances of adults
when using mid-air interaction systems, children of different ages may
have different speeds and accuracies in mid-air gesture interaction
tasks. To date, there has been a gradual proliferation of somatosensory
interaction products for children users, which are widely active in the
gaming and education fields. Many somatosensory gaming platforms
have gone live with commercial games for children with mid-air gesture
interaction. For example, Kinectimals (see Fig. 1-c) allows players to
interact with virtual pets through mid-air gestures, and classic games
like Cut the Rope (see Fig. 1-d) that were originally designed for touch
screens can now be played in leap motion using gestures. In addition
to games, there are also other interactive systems for children (Garcia-
Sanjuan et al., 2016; Lyu et al., 2017; Ruiz-Rodriguez et al., 2019). But
they still lack adequate prior knowledge and experimental evidence on
how well children can master this interaction modality. Namely, due
to the lack of quantitative studies, parameter settings in most existing
applications are ad hoc and empirical. Design choices in one application
cannot trivially be extended to other applications, which limits the
broad applicability of new mid-air technologies for children.
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Fig. 1. Several commercial applications that use mid-air gesture interaction: (a) Far Cry 6, (b) Counter-Strike, (c) Kinectimals, and (d) Cut the Rope. The above pictures are from
the official websites of these games.
To quantitatively understand children’s abilities and preferences
on mid-air interaction systems, we conducted two studies focused on
analyzing children’s arm performances in two widely-used mid-air
gesture interaction tasks, i.e., a pie menu task (or pie task) and a target
acquisition task. In the pie menu study, we recorded the performance
(i.e., speeds and accuracies) of children grouped by age under menus
with different numbers of items. We also measured the children’s
abilities to perform arm movements by kinematic metrics, including
variability of movement trajectories and the maximum distance of
movement. In the target acquisition study, we further evaluated the
speed–accuracy trade-off (SAT) of children’s arm movement. This was
conducted by comparing the intercepts and slopes of Fitts’ law in differ-
ent directions with children in different age groups. Finally, based on
the quantitative and qualitative results obtained from the two studies,
we summarize empirical evidence for children’s arm movements and
derive a set of design guidelines that can be used to design mid-air
gesture interaction systems for children.

The remainder of this paper is organized as follows. First, we review
the relevant literature on children’s mid-air gestural interactions; then,
we describe the design, procedures, analyses, and results of two studies
on pie menus and target acquisition tasks. Next, we present the results
of our studies and summarize the implications for the design of child-
oriented mid-air gesture interaction. Finally, we discuss our conclusions
and future work.

2. Related work

In this section, we divide the previous work related to mid-air
gesture interaction for children into three categories: mid-air upper
limb movement, interactive systems for children, and Fitts’ law and
throughput.

2.1. Mid-air upper limb movement

The human performance of adults, especially adults’ upper limb-
based motor skills, has been extensively studied. Balakrishnan and
MacKenzie (1997) explored the relative bandwidth of users’ limb seg-
ments, such as fingers, wrists, and forearms, through experiments. Tian
et al. (2017) investigated human motor skills to perform discrete
menu selection tasks using arm-stretching movements, through two
2

controlled experiments. Wittorf and Jakobsen (2016) focused on free-
hand mid-air gestures for wall-display interaction and learned the
user-preferred gesture types in this context. Recently, Bachynskyi and
Müller (2020) studied the dynamics of aimed mid-air movements.
They found that mid-air movements have more complex dynamics
than mouse movements. Besides, researchers have also studied the
fatigue of upper limb-based movements for adults. Jang et al. (2017)
built a biomechanical upper limb model, a three-compartment fatigue
model, and maximum shoulder torque estimation to quantify arm
fatigue. Cheema et al. (2020) conducted a user modeling experiment
using a biomechanical arm simulation model to synthesize mid-air
interaction movements and to predict the associated embodied user
experience focusing on subjective fatigue.

A few interaction techniques have been proposed based on the
study of motor skills of adults. Mine et al. (1997) explored novel body-
relative interaction techniques based on the framework of propriocep-
tion, which refers to a person’s sense of the position and orientation of
his or her body and limbs. Ni et al. (2008) proposed rapMenu, a design
for freehand menu selection, by using tilt and pinch gestures. Buschek
et al. (2018) proposed an interaction technique that combines arm
and wrist rotation gestures with simultaneous key to enhance physical
keyboard shortcuts. Lyu et al. (2018) explored the combination of 2D
directional gesture and 3D depth arm-stretching gesture, and designed
a hierarchical marking menu MagicMark, to extend the selection ca-
pability of large screen interactions. In addition, Muangmoon et al.
(2016) conducted a pilot study on game menu navigation for the elderly
using non-tactile gesture interaction, which is derived from the Kinect
standard gesture that has been proved to be ‘‘very easy to use’’ and
‘‘very fun’’.

Prior works have ascertained that children differ from adults in
the ways they select targets and make gestures. For example, children
would miss onscreen targets more often than adults. Cognitive develop-
ment may vary considerably across age groups of children, particularly
in motor skills and executive functions (Chen et al., 2020). Compared
with adults, children have significantly weaker motor speed and preci-
sion in completing motor tasks. Age also plays an important role in the
speed and efficiency of information processing. The accuracy of chil-
dren’s pointing shows significant age differences, i.e., young children
have significantly lower pointing ability than older children (Hourcade,

2022). One reason for the development of motor skills in children
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is the significant increase in the number of myelin sheaths in the
brain between the ages of 6 and 8 years (Feldman, 2008). Children
become more aware of their hands’ positions in space relative to
their bodies (i.e., proprioception) and can engage in more fine-grained
interactions (Chen et al., 2020). Yan et al. (2000) reported that younger
children (mean age 6.4 years) behaved slow, inconsistent, uneven,
and nonlinear arm movements compared to older children (mean age
9.2 years) and adults. Connell et al. (2013) conducted an elicitation
study on children’s defined gestures with Microsoft Kinect, applying a
Wizard-of-Oz approach. Vatavu et al. (2015) calculated the objective
measures of the consensus between 1312 body gesture preferences of
children using a dissimilarity-consensus method. Some researchers also
focused on children’s selection tasks. Carvalho et al. (2014) evaluated
the performance of specific target audiences, including children, adults,
and older adults, across different interaction paradigms. Also, they
compared the interaction performances of children and adults in tar-
get selection experiments using different interaction devices (Carvalho
et al., 2015). However, most of the above studies have not investi-
gated the effect of spatial constraints on children’s mid-air gestures in
different orientations and age groups.

2.2. Interactive systems for children

The book ‘‘Child-Computer Interaction’’ by JP Hourcade mentions
that some specific interactions seem to be easier for children when
using mid-air gestures. Also, younger children’s pointing skills are not
as good as older children’s, so that younger children require larger
targets than older children in order to reach the same level of accu-
racy (Hourcade, 2022).

Researchers used mid-air gestures to build learning and play systems
for children. Lyu et al. (2017) developed EnseWing, an interactive
system that can help children with limited music training to experience
instrumental ensemble playing, in which children can play music notes
by moving a hand horizontally. Adachi et al. (2013) developed a sim-
ulation game called ‘‘Human SUGOROKU’’ that consists of a full-body
interaction system displaying vegetation succession. It allows immer-
sive participatory learning for elementary school students. Rubegni
et al. (2019) studied incarnation-based touchless gestural interfaces,
taking a child–display interaction perspective. Moser and Tscheligi
(2015) studied 20 children’s play experiences of a popular game named
‘‘Cut the Rope’’ with touch and mid-air gestures.

Researchers have also built interactive systems using mid-air ges-
tures to assist children in storytelling. Lu et al. (2011) proposed a
digital storytelling system called ShadowStory to support children in
performing their stories using handheld sensors.

In recent years, gestural interaction for special children has also
attracted attention in the HCI community. Sanchez et al. (2017) de-
signed a video game named BeeSmart that allows children to draw
around pictographs and words on a screen. They used the game to
help children with Down Syndrome, who have deficits in eye–hand
coordination skills. Ruiz-Rodriguez et al. (2019) developed gesture-
based video games to help children with autism who have fine-motor
coordination problems.

Although various interaction systems for children have been pro-
posed, as described above, their parameter settings are still ad hoc
and empirical. Therefore, it is difficult to evaluate their usability with
a uniform criterion, due to the lack of a methodological design for
children’s user interfaces based on upper limb movements.

2.3. Fitts’ law and throughput

The speed–accuracy trade-off is one of the most accepted principles
for human motion performance in HCI. In general, the speed–accuracy
trade-off means that the more accurate the task to be performed, the
longer it takes, and vice versa. The speed–accuracy trade-off is derived
from Fitts’ law (Fitts, 1954; MacKenzie and Isokoski, 2008), which
3

predicts that the movement time (MT) needed to point to a target is
logarithmically related to the ratio of the width (W) of the target and
the distance (A) to the target.

Fitts’ law was originally established in a 1D pointing task with
a stylus and later extended in 2D and 3D spaces, with different de-
vices (Accot and Zhai, 2003; Grossman and Balakrishnan, 2004) and
tasks (Accot and Zhai, 2002, 1997), and evaluated in different instruc-
tion conditions (MacKenzie and Isokoski, 2008; Zhai et al., 2004).

Fitts’ law is considered a standardized evaluation tool to investigate
the trade-off between speed and accuracy in pointing behavior. There
are two common ways to use Fitts’ law in evaluation. The first is to com-
pare the intercept and slope in Fitts’ law under different conditions. The
intercept defines the intersection on the 𝑦-axis and is often interpreted
as a constant delay of time in a specified apparatus. The slope, on the
other hand, describes the acceleration of movement time increases as
the index of difficulty increases. Because these two parameters have
their physical meanings in movement time prediction, researchers can
measure movement times in different conditions and determine how
the conditions affect the parameters in Fitts’ law relationship (Accot
and Zhai, 2002; MacKenzie and Isokoski, 2008). Second, throughput
(TP) is calculated as a measure of human performance. The rationale
for using TP to measure user performance is that the act of performing
a target selection task is akin to transmitting information through the
channel of the user, with higher transmission rates indicating more
effective user performance. TP has been widely adopted to evaluate
the user performances of different specified user interfaces (MacKenzie,
2015).

In this paper, both the parameters of Fitts’ law and the metric
of throughput are used to investigate the speed–accuracy trade-off of
children’s arm movements.

3. Pie menu study

The purpose of the first study on a pie menu task is three-fold:

(1) Recording targeting performance and motor characteristics such
as speed, accuracy, and maximum range of motion of children’s
upper arms for different numbers of items divided in the pie
menu;

(2) Studying the relation between the performance of children and
the directions of upper limb movement;

(3) Analyzing the study results based on ages.

Note that we will further leverage the results of the pie menu study as
a prior in the second study (Section 4).

3.1. Experimental setup

3.1.1. Task
The task is a formalization of selecting an item in a menu, called Pie

Menu. The formalization in this study inherits the basic idea of the pie
menu, in which the users wave their hands along a specified direction in
the space to finish the task, as illustrated in Figs. 2 and 3. The selectable
items are sectors uniformly distributed around the center. For example,
a pie menu with 4 items divides the circular space into four equal
regions. The orientations of the centerlines of these regions are 0◦, 90◦,
180◦, and 270◦, respectively. In our implementation, the boundaries of
menu items are hidden to avoid participants using visual feedback to
adjust their hand movements. Instead, a thin black arrow in the middle
of a menu item is displayed to hint to participants the direction in
which they should wave their hands to select the corresponding item.
Aiming to study children’s arm performances in different directions, we
ask the participants to stretch their arms as far as possible in certain
directions. Meanwhile, we record the maximum distance each child
could reach in each direction, as well as his/her time cost and accuracy.
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Fig. 2. Illustration of the pie menu experimental task: (a) The user makes a fist for calibration, and (b) the user waves the arm in the specified direction.
Fig. 3. Photos of the operating scenes.
3.1.2. Participants and apparatus
We recruited 20 children (10 boys and 10 girls) between the ages

of 6 and 12. To investigate the effect of different age groups on mid-air
arm swing performance, we divided the children into two age groups:
10 children aged 6–8 years old (3 children aged 6, 3 children aged
7, and 4 children aged 8) and 10 children aged 9–12 years old (3
children aged 9, 2 children aged 10, 3 children aged 11, 2 children
aged 12). We communicated adequately with the child participants and
their guardians to ensure that they understood the purpose and content
of the study. After obtaining the consent of the participants, they signed
an informed consent form.

We conducted the experiment on a Lenovo ThinkPad laptop com-
puter with a 12.5-inch LED display at 1366 × 768 resolution. The
used motion-tracking device was a Microsoft Kinect v2.0. All children
participating in the experiment were right-handed and did not have
prior experience with Kinect or similar devices.

3.1.3. Design
A within-subject factorial design is employed. To explore the ca-

pacity limit of children on item numbers in a pie menu, we set the
maximum number of menu items to 16. As a result, three menus
with 4, 8, and 16 items for different waving directions were used in
our experiments. Trials of the three menus are arranged in 3 blocks
with 10 repetitions for each direction. The order of the three blocks
is counterbalanced with a Latin square design. In each block, the
orders of all directions in a menu are randomly provided. Prior to the
experiment, each participant has 5 min to practice and there is a ten-
minute interval between each block. On average, each participant spent
40 min to complete the whole experiment. In total, we collected data
from 5600 trials by 20 participants ((4 direction + 8 direction + 16
direction) × 10 repetitions × 20 participants).

The body shapes of the participants were slightly different, espe-
cially their arm lengths. Therefore, before the first waving trial, we
asked the participants to calibrate the menu center to the starting
position of their dominant hand in a waving gesture. We guided the
4

participants to set the starting position of their waving gesture in front
of their shoulders and allowed small deviations to ensure their natural
and comfortable feeling. To calibrate the system, the participants raised
and held their right hands (Note that all of them were right-handed)
in front of their shoulders for 2 s. A ‘‘peng’’ sound was prompted to
indicate the calibration was completed (refer to Fig. 2(a)). During
the experiment, the participants were asked to keep their bodies as
stationary as possible to keep the consistency of their bodies and facing
directions.

After calibration, the participants were asked to start the waving test
in the direction prompted on the screen. Specifically, the participants
placed one of their hands in the center of the starting point for 0.8 s,
then the green circle turned red with a ‘‘beep’’ sound emitted. One
arrow in a certain direction appeared prompting the waving direction
in this trial. The participants were asked to wave their arms as far
as possible in the specified direction and to complete the task as
quickly and accurately as they could (refer to Fig. 2(b)). The task ended
once the participants stayed at the farthest position for 1 s. We also
had a verification mechanism to ensure that the arm was straight.
Specifically, if the angle between the participant’s forearm flexion and
extension was less than 105◦ (Nam et al., 2019), we treated it as an
invalid trial with a warning tone. In this case, the participant was
required to redo this trial. We collected the participant’s hand positions
with a sampling rate of 100 Hz in the trial. Examples (participants 03,
04, and 09) of movement trajectories are shown in Fig. 4.

3.1.4. Measurements
Our measure is inspired by the path-based pointing measure of

MacKenzie et al. (2001) and Vatavu et al. (2013). MacKenzie et al. de-
fined the task axis as a straight line between the user’s mouse starting
point and the pointing target, against which the accuracy of the user’s
pointing path is compared (MacKenzie et al., 2001). Without loss of
generality, we call the vector from the starting position to the end
position of the participant’s waving trajectory as the waving vector, and
the vector of each given direction in the task as the direction vector.
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Fig. 4. Example motion trajectory diagrams: (a) (b) (c) represent the participants 03, 04 and 09, respectively. The first to third columns (from left to right) for each participant
represent the trajectory diagrams for the 4-, 8- and 16-item menus, respectively.
To quantitatively analyze the experimental results, we also define the
following measures:

• Completion time: the time required to complete a trial, from the
confirmation of the initial gesture to the end of the waving.

• Offset : The average offset of the trajectory points of a waving
movement perpendicular to the direction vector given in the task.

• Range of motion: the maximum waving distance of one trail.
• Error rate: An error is defined if the angle between the waving vec-

tor and the direction vector in the task is larger than a specified
threshold. The error rate is calculated by dividing the number of
errors by the total number of trials in a condition. The thresholds
of the three menus with 4, 8, and 16 items, are set to ±45◦,
±22.5◦, and ±11.25◦, respectively.

Movement time (MT) and error rate (ER) are two common mea-
sures of pointing speed and accuracy. However, the two measures
are not good at capturing subjects’ motor behavior during the exper-
iment (MacKenzie et al., 2001). Therefore, we introduce the motion
offset metric (Vatavu et al., 2013) to reveal the characteristics of the
gesture motion path.

3.2. Experimental results

We analyze the experimental results in three aspects: (1) The quan-
titative performance of the participants in the pie menu study in terms
of completion time, offset, range of motion, and error rate. (2) The
effect of ages on completion time and error rate was analyzed by
comparing the 6–8 years age group with the 9–12 years age group. We
also compared the performance of children and the previously reported
performance of adults (Ni et al., 2011; Gang and O’Neill, 2012). (3)
The effect of different menus on subjective user experience. We run a
Kolmogorov–Smirnov normality test at the significance level of 0.05
before statistical analysis. Repeated-measures ANOVAs are used if the
data followed a Normal distribution, while Friedman tests are adopted
5

if the data did not follow a Normal distribution. Post hoc multiple
analyses are also performed, and Bonferroni correction is used to adjust
for the 𝑝-value to compare the differences between the two groups.

3.2.1. Quantitative performance
In Table 1, we summarize the pie menu study results in terms of

four types of quantitative measures. Note that we focus on the top-2
(‘‘maximum’’ and ‘‘secondary maximum’’) and last-2 values (‘‘mini-
mum’’ and ‘‘secondary minimum’’) for each measure to make these
values comparable. For each value, we also show its corresponding
angle to highlight the impact of angles. The overall average error
rate of all participants is 3.81%. Friedman’s test shows that there is
a significant main effect for Menu, 𝑋2(2, N = 20) = 32.771, 𝑝 < .001,
and the main effect of Age is marginally significant, 𝑋2(1, N = 30) =
3.857, 𝑝 = .050.

As can be seen from Table 1, when the number of items in a
pie menu increases, the quantitative performance decrease, i.e., more
completion time required and a larger error rate. Moreover, the user
performances on pie menus with different items are consistent with
corresponding angles. As the number of items increases, the influence
of the angles is more accurate, e.g., the slowest angles are gradually
changed from 180◦ on the 4-item menu to 112.5◦ on the 16-item menu.
Similar scenarios can also be observed in the other three measures. Post
hoc analyses show that, for the 4-item menu, there are significant dif-
ferences between all pairs except for the pair between 90◦ (43.70 cm)
and 270◦ (44.05 cm) directions (𝑝 = 0.871). For the 8-item menu, the
range of motion in the 0◦ direction (40.01 cm) is significantly shorter
than the other directions (all 𝑝 < .01). For the 16-item menu, pairwise
comparison results show that there is no significant difference between
any two directions (all 𝑝 > .05). In order to show the influence of
directions more clearly, we plot the range of motion of each direction
in the 4-, 8- and 16-item menu on a radar map, as shown in Fig. 5.

On the other hand, we can see that the error rate increases sharply
from the 8-item pie menu to the 16-item one. It is mainly because
the over-divided pie menu makes the items difficult to correctly select.
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Table 1
The average completion time, range of motion, offset, and error rate for three different pie menus. In each row, we show
the top-two (‘‘maximum’’ and ‘‘secondary maximum’’) and last-two (‘‘minimum’’ and ‘‘secondary minimum’’) values for each
measure as well as their corresponding angles in the parentheses.

Maximum Secondary maximum Secondary minimum Minimum

Completion time

4-items 1519 ms (180◦) 1399 ms (90◦) 1397 ms (270◦) 1370 ms (0◦)
8-items 1605 ms (135◦) 1572 ms (180◦) 1437 ms (315◦) 1397 ms (0◦)
16-items 1744 ms (112.5◦) 1740 ms (135◦) 1538 ms (337.5◦) 1460 ms (0◦)

Range of motion

4-items 44.05 cm (270◦) 43.7 cm (90◦) 41.9 cm (180◦) 39.98 cm (0◦)
8-items 44.48 cm (90◦) 43.7 cm (270◦) 41.4 cm (45◦) 40.01 cm (0◦)
16-items 44.12 cm (270◦) 43.3 cm (247.5◦) 38.2 cm (45◦) 38.13 cm (67.5◦)

Offset

4-items 4.01 cm (180◦) 3.42 cm (0◦) 2.46 cm (270◦) 2.21 cm (90◦)
8-items 4.03 cm (180◦) 3.97 cm (45◦) 2.47 cm (270◦) 2.42 cm (90◦)
16-items 5.94 cm (22.5◦) 5.18 cm (67.5◦) 2.44 cm (270◦) 2.44 cm (90◦)

Error rate

4-items 1.5% (90◦) 0.5% (0◦) 0.5% (180◦) 0% (270◦)
8-items 1.5% (90◦) 1.5% (225◦) 0% (180◦) 0% (270◦)
16-items 20.5% (22.5◦) 15.5% (315◦) 3% (270◦) 1.5% (90◦)
Fig. 5. Maximum range of motion for each direction in the three types of pie menus.
This demonstrates that a user interface involved with a pie menu
task should balance functionality and usability. Increasing the number
of items could increase the functionality of the interface, but it also
could increase the difficulty and error-prone aspect of accessing those
functions for children. Our results indicate that, in a full 360◦ pie menu,
the threshold of this balance is the 8-item menu.

3.2.2. Impacts of age
To analyze the impact of the age factor on user performance,

we separate the data of the participants into two age-based groups,
i.e., groups for 6–8 years old and 9–12 years old, respectively. Fig. 6
shows the means and standard deviations of the error rates in different
age groups on the three menus. As for the age factor, post hoc analyses
show that the error rates of the 6–8 age group (M = 12.43%) are
significantly higher than those of the 9–12 age group (M = 7.31%)
for the 16-item menu, 𝑋2(1, N = 10) = 10.000, 𝑝 = .002. The error
rates between the two age groups for the 4- and 8-item menus are not
significantly different (𝑝 > .05).
6

We found that in the pie menus with 4 or 8 items, the error rates
of the participants are reasonably low. For the two menus, the error
rates, completion time, and average offsets of the two age groups
do not have statistically significant differences. When the number of
items is increased to 16, the error rates of the participants increased
significantly, and the two age groups performed quite differently. The
main reason could be that, in the condition of a higher item density,
both the radial distance and the fault tolerance threshold are lower,
which causes the participants to tend to make more errors during the
waving tasks, especially for younger children with less developed arm
motor skills. The participants’ subjective evaluations also confirm the
above results.

In addition, we further compare the user performances between
children and adults on direction-related, mid-air gesture interaction. As
reported in previous research studies on marked menus (Ni et al., 2011;
Gang and O’Neill, 2012), many marked menus for adults generally do
not have more than 8 items, which is consistent with our findings.
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Fig. 6. The mean values and standard errors of the error rates of different age groups for the three types of pie menus.
For example, Ni et al.’s study on rapMenu (Ni et al., 2011) shows
that in a circular menu based on wrist-tilt interaction, users select
menus with 8 items with the fastest speed and selected menus with 20
items with the slowest speed; when the number of items in a menu
is increased from 8 to 16, the error rate is significantly increased
(i.e., from below 2% to about 4%). Still, the error rate increase for
adults is much smaller than that of children for the same item density
cases (from 0.75% to 9.87% for children). Probably, the main reason
is that adults have a higher arm movement precision than children in
general, so they can still maintain a relatively stable and low error
rate when handling more levels of menu items. Gang and O’Neill
(2012)’s study of 3D marker menus shows a significant effect of target
orientation on selection time and error rate: for adult users, the right
orientation is very comfortable, while the up and down orientations are
also preferred. This is largely consistent with the experimental results
of child users, i.e., users perform well in all three directions, 0◦, 90◦,
and 270◦. Their study also reported a subjective dislike of down-left
and back-left orientations among adult users. Users had difficulty in
selecting targets in the vertical direction, especially downward targets
(down, left down, and right down), and there were high error rates,
which could be caused by the motion pattern of the arm: hands usually
do not move in the same vertical plane as the user’s chest (Gang and
O’Neill, 2012). Our experimental results show that in an 8-item menu
task, child users also have higher error rates in the 90◦ and 225◦

directions.

3.2.3. Performances in different directions
To understand children’s performances in different directions, we

mainly refer to the user performances in the 16-item menu task, as it
can better reflect the limit of user performances. As shown in Fig. 7,
the radar map of the error rates of the 16-item menu task presents a
‘‘bat-like’’ distribution. That is, in the distribution, the error rates in the
up (90◦) and down (270◦) directions are significantly lower than in the
other directions. For the ‘‘bat wings’’ on both sides, the error rates in
the middle of the wings (0◦ and 180◦) are relatively low, while the error
rates in the oblique directions, such as 45◦ and 22.5◦, are higher. It is
interesting to note that, although all of the children who participated
in our study are right-handed, between the two ‘‘bat wings’’, the wing
on the left side has slightly lower error rates than the wing on the right
side. The main reason could be that the children in the 6–8 age group
reduced their error rates with the cost of increasing the completion time
when completing tasks on the left side, especially on the upper left. As
such, the results show lower error rates on the left wing.

Our results also show that, in terms of the error rate, children
perform best in the up-and-down direction, followed by the directions
7

close to the top and bottom (i.e., 67.5◦, 112.5◦, and 292.5◦), while in
most directions on the right side, children perform worse. Combined
with the results of the offset and completion time analysis, we found
that children show similar characteristics in controlling their arm move-
ment: accurately controlling the movement when waving up and down,
being slow and cautious when waving in the direction on the left side,
being casual and fast when completing movement on the right side,
which leads to slightly worse performance.

3.2.4. Direction of calibration
For the 8-item menu task, our results show that the range of motion

of the participants in the right (0◦) direction is the shortest. By contrast,
the ranges of motion on the left side (i.e., upper-left, left, and lower-left)
are significantly larger than those on the right side (i.e., upper-right,
right, and lower-right). This is different from our speculation before
the study. We found an interesting issue based on the arm trajectories
and our observations during the experiment. Although the participants
were explicitly asked not to turn their shoulders and upper bodies
during the experiment, more than half of them involuntarily twisted
their shoulders to the left, in order to satisfy the requirement of ‘‘wave
their arms as far as possible’’ to make their own performance better.
Such performances may lead to an increase in the waving distances
and completion time in the directions on the left side.

Since the postures of waving to the left cannot be unified into a
comfortable posture suitable for all the participants to wave, it is not
a suitable direction of mapping. In summary, the right direction can
undoubtedly be used as the direction in which the user straightens
the arm when mapping the length of the arm in the follow-up ‘‘target
acquisition study’’ experiment.

4. Target acquisition study

In the second study, we investigate the speed–accuracy trade-off of
children’s arm movements in terms of Fitts’ law. This goal is achieved
through a target acquisition task, in which we focus on the following
three key questions:

(1) How do movement orientation and age affect children’s motor
performance in target acquisition tasks?

(2) Do the performances of target acquisition in children’s aim move-
ments match Fitts’ law?

(3) If the answer to the above second question is ‘‘yes’’, how does the
index of difficulty (ID for short) in Fitts’ law vary across different
spatial orientations and ages in children’s aim movements?
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Fig. 7. Error rate for each direction in the three faction menus.
4.1. Experimental setup

4.1.1. Participants and apparatus
We recruited fourteen volunteers and divided them into two groups:

(i) seven children were younger (6 to 8 years old), (ii) the other seven
children were older (9 to 12 years old). The apparatus used in this
experiment is the same as in the first study. All participants are right-
handed and have no prior experience in Kinect or similar visual-based
interaction devices.

4.1.2. Design
Participants are asked to move one of their hands to control a spot

moving from a starting point to a circular target on the screen and
hover for a while to select the target. The experiment is carried out
as a within-subject design across 72 conditions generated by 3 factors,
including Direction, Width, and Distance. The target is set in one of eight
different directions, with the width of 50 pixels (1 cm), 75 pixels (1.5
centimeters), or 100 pixels (2 centimeters). The distance from the target
to the starting point is set to one of three values, 80 pixels (1.6 cen-
timeters), 160 pixels (3.3 centimeters), or 320 pixels (6.5 centimeters).
A total of 72 combinations (i.e., 8 directions × 3 widths × 3 distances)
are randomized to reduce the order effect. Before the experiment, each
participant has a 5-minute practice session. Participants can take a 10-
minute break after 2 repetitions. The experiment is anticipated to last
approximately 20 min for each participant on average. In total, we
collected data from 4032 trails by 14 participants (8 directions × 3
distances × 3 widths × 4 repetitions × 14 participants).

4.1.3. Procedure
First of all, we normalized the arm length of the participant by

asking her/him to raise the right arm horizontally and then mapped
her/his arm length to 320 pixels (the longest distance of the target)
on the screen. To ensure all children with different arm lengths can
reach the target with the maximum distance on the screen, we set
such a ratio as M∕D = L∕D𝑚𝑎𝑥, where M represents the movement
in physical space, D represents the distance moved in the screen,
L represents the arm length of the child, and D𝑚𝑎𝑥 represents the
maximum distance on the screen. For example, if a child’s arm length is
60 centimeters, he must move his hand 60 centimeters to reach a target
with a maximum distance of 320 pixels, whereas he only needs to move
15 centimeters to reach a target with a target distance of 80 pixels.
8

After the normalization, we asked the participant to raise the right fist
in front of the right shoulder for calibration (refer to Fig. 8(a)), which
was similar to the calibration process in the first study. Before each
experiment, a green circle with a radius of 50 pixels was placed in the
center of the screen as the starting point. The child participant’s hand
was mapped on the screen as a cursor, and we asked the child to hold
the cursor on the starting point for about 0.8 s. The green starting point
in the center of the menu turned red and a ‘‘beep’’ sounded to indicate
the start of an experiment. Meanwhile, a new green circle appeared
on the screen at a specific location to represent the target. The child
participant needed to move his/her hand to the target as quickly and
accurately as possible and stay for about 0.8 s to complete the selection
task (refer to Fig. 8(b)). And Fig. 9 shows a photo of the operating
scene.

If the participant correctly captures the target, the system will
record the trial as a success. Then, the target disappears with a ‘‘ding’’
sound, and the central circle returns to green for the next round. In any
of the following cases, the system recorded an error and played an error
sound: (i) the participant did not move his/her hand into the target area
within 0.8 s after the start of the experiment; (ii) the participant moved
his/her hand into the target area but did not stay there for more than
0.8 s. The next round would not start until the participant successfully
completes this trial.

After all trials, participants were asked to complete a Likert scale
questionnaire that provides subjective ratings of different aspects of
each type of goal. Likert scales are widely recognized as one of the
simplest and most reliable techniques used for attitude measurement
which is appropriate for children (Royeen, 1985). We used a 5-point
Likert scale ranging from 1 (worst) to 5 (best). According to Adelson
and Mccoach (2010), the 5-point scale is more appropriate for children
at the elementary school level. The designed questions include: how
easy is it to capture the target points? How fast is it to capture the
target? How accurate is it to capture the target? etc. And the questions
were all set as straightforward, simple sentences, and the research
assistant aided in describing the explanation of the questions to ensure
that the participants understood the questions.

4.1.4. Measurements
The following metrics are employed to measure the task perfor-

mance of the participants:
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Fig. 8. The target acquisition experimental task: (a) The user makes a fist for calibration; (b) the user moves one hand to capture the green target according to on-screen prompts.
Fig. 9. Photos of the operating scenes.
• Task completion time: The time from the appearance of a target to
the capture of the target;

• Error rate: The percentage of times participants failed to capture
the target in all experiments. The errors are considered to be the
scenarios when the child participant’s hand fails to stay within
the target area for 0.8 s, and when the distance from the location
where the child participant’s hand stays for 0.8 s to the center of
the target circle is greater than the radius of the target.

4.2. Experimental results

We report the experimental results in two parts: (1) The effects of
the ID factor and the age factor on the completion time and the error
rate, respectively, and (2) the fitting of the Fitts’ law.

The speed–accuracy trade-off originated from the widely-known
Fitts’ law (Fitts, 1954; MacKenzie and Isokoski, 2008), which predicts
that the movement time (MT) needed to point to a target is logarithmi-
cally related to the ratio of the width (W) of the target and the distance
(A) to the target:

𝑀𝑇 = 𝑎 + 𝑏 log2(𝐴∕𝑊 + 1), (1)

where 𝑎 and 𝑏 are regression coefficients (called intercept and slope,
respectively). The term 𝑙𝑜𝑔2(𝐴∕𝑊 + 1) in Eq. (1) is called the index of
difficulty (ID) of the task (MacKenzie and Buxton, 1992), describing the
9

difficulty to complete the task with a specified apparatus (e.g., using a
mouse to point at a target displayed on a monitor).

The throughput (TP) is calculated by dividing the index of difficulty
by movement time as follows:

𝑇𝑃 = 𝐼𝐷∕𝑀𝑇 = 𝑙𝑜𝑔2(𝐴∕𝑊 + 1)∕𝑀𝑇 (2)

4.2.1. Completion time
In Fig. 11, we summarize the completion time for different IDs.

The average completion time of all the child participants is 1680 ms.
A repeated-measures ANOVA shows significant effects of ID (𝐹6,72 =
215.800, 𝑝 < .001), Distance (𝐹2,24 = 387.140, 𝑝 < .001), Width (𝐹2,24
= 61.319, 𝑝 < .001) on completion time. Post hoc analysis shows that
the completion time is significantly different between all pairs of IDs (𝑝
< .001) except the one between ID = 2.070 and ID = 2.397 (𝑝 = .135).
The task that took the longest time is ID = 2.888 (2300 ms), while ID
= 0.848 took the shortest time (1074 ms).

We further look into the data by comparing the completion time of
different age groups in separated ID conditions using a paired sample
t-test. As shown in Fig. 10, in the case of the lowest index of difficulty
(ID = 0.848), the completion time for children aged 6–8 is 1141 ms,
which is higher than the 1008 ms completion time for children aged
9–12, 𝐹1,12 = 5.033, 𝑝 = .049. However, the differences in completion
time between the two age-related groups are small. The results of both
groups show the consistency of their performances on IDs, that is, the
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Fig. 10. Completion times of different age groups in separated ID conditions. Error bars indicate the standard errors.
Fig. 11. Completion times for all child participants in the target acquisition study, with respect to different IDs. Error bars indicate the standard errors.
higher the index of difficulty, the more completion time required. From
Fig. 11, we can see an approximately linear increasing trend of the
completion time with the increase of the ID.

4.2.2. Error rate
Analogously, we illustrate the pair-wise error rates for different IDs

in Fig. 12. The overall average error rate of all participating children
is 4.17%. Friedman tests show significant effects of ID (𝑋2(6, N = 14)
= 57.312, 𝑝 < .001), Distance (𝑋2(2, N = 14) = 20.415, 𝑝 < .001), and
Width (𝑋2(2, N = 14) = 24.275, 𝑝 < .001) on the error rate. Post hoc
analysis shows that the error rates are significantly different between
the condition of the highest index of difficulty (ID = 2.888, error rate =
16.07%) and the others (ID = 0.848, ID = 1.047, ID = 1.379, and ID =
1.648). Different from the completion time that has an approximately
linear relation to the ID (refer to Fig. 11), we can see that there exists a
sharp increase in the error rate from ID = 1.648 to ID = 2.070. Hence,
the error rate has a non-linear relation to the ID.

We further look into the data by comparing the error rates of
different age groups in separated ID conditions (Fig. 13) using Friedman
tests. In the condition of the highest index of difficulty (ID = 2.888),
the average error rate for the 6–8 age group is 20.54%, which is
much higher than the 11.61% for the 9–12 age group, 𝑋2(1, N = 7)
= 3.571, 𝑝 = .059. However, no statistically significant main effect of
10
the age factor is found, 𝑋2(1, N = 49) = .125, 𝑝 = .724. However,
one interesting observation is that the relative performances of two
age-related groups are reversed after the step point. Specifically, when
ID ≤ 1.648, the error rate of the 6–8 age group is lower than that of
the 9–12 age group. However, when ID ≥ 2.070, the 9–12 age group
performs better than the 6–8 age group. This could be explained as
follows: The step change of the error-rate vs. ID relation impacts the
younger participants more.

4.2.3. The Fitts’ law fitting results
Fig. 14 shows the fitting results of Fitts’ law for the two age groups.

We observe high fits of Fitts’ law model with 𝑅2 values of 0.9852 and
0.9730 for the 6–8 age group and the 9–12 age group, respectively.
The slopes of the models for the two age groups do not show much
difference, but the intercept for the 6–8 age group is slightly higher
than the 9–12 age group. The throughput of the 6–8 age group for each
direction is lower than the 9–12 age group. In the 6–8 age group, the
lowest throughput is 7.45 bits/s for ID = 0.848 and the highest is 12.54
bits/s for ID = 2.888. In the 9–12 age group, the lowest throughput is
8.40 bits/s for ID = 0.848 and the highest is 12.83 bits/s for ID = 2.888.

In order to verify the fittings of Fitts’ law, we mainly focus on the
conditions of different directions and different age groups. It is obvious
that linear regression achieves high fitting accuracy for data divided
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Fig. 12. Error rates for all child participants in the target acquisition study with respect to different IDs. Error bars indicate the standard errors.

Fig. 13. Error rates of different age groups in separated ID conditions. Error bars indicate the standard errors.

Fig. 14. The fitting results of Fitts’ law for the two age groups.
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Table 2
Table of the throughputs of the mid-air target selection tasks for the eight directions.

DIR ID

0.848 1.047 1.379 1.648 2.070 2.397 2.888 AVG

0◦ 8.57 8.72 9.02 9.12 11.08 12.05 12.97 10.21
45◦ 7.72 8.48 9.28 9.46 11.30 12.17 12.78 10.17
90◦ 7.96 8.31 9.54 9.83 11.29 11.57 13.59 10.29
135◦ 7.48 8.10 8.92 9.36 10.19 11.55 12.62 9.74
180◦ 7.20 8.45 9.25 9.87 10.68 10.89 10.58 9.56
225◦ 8.35 8.35 9.25 9.69 9.94 11.33 12.54 9.92
270◦ 8.02 8.61 9.37 10.39 10.87 12.68 14.26 10.60
315◦ 7.93 8.43 9.30 9.49 11.16 12.2 12.85 10.19

AVG 7.90 8.43 9.24 9.65 10.81 11.80 12.77

according to 8 directions and 2 age groups with no fewer than 93%
of the variances explained by the model. This indicates that the target
acquisition task for children’s mid-air gestures still conforms to the
law of speed and accuracy (i.e., Fitts’ law). That is, when the target
is smaller and the distance is farther, it takes longer to complete the
task, and vice versa.

Moreover, by employing Eq. (2), we calculate the throughputs of
the mid-air target selection tasks for the eight directions. As we can see
from Table 2, increasing ID increases the throughputs of mid-air target
selection. The average throughput in the condition of ID = 2.888 is
he highest (12.77 bit/s) while the average throughput in the condition
f ID = 0.848 is the lowest (7.90 bit/s). Among all the directions, the
ighest throughput is found in the 270◦ direction with an average value
f 10.60 bit/s, while the lowest is found in the 180◦ direction with 9.56
it/s. As a result, we observe that under all conditions, the throughput
f ID = 2.888 in the 270◦ direction is the highest (14.26 bit/s), and that
f ID = 0.848 in the 180◦ direction is the lowest (7.20 bit/s). Friedman
ests show significant effects of ID on subjective ranking of the error-
rone feature (𝑋2(6, N = 14) = 53.157, 𝑝 < .01), speed (𝑋2(6, N = 14)
63.834, 𝑝 < .01), and ease of use (𝑋2(6, N = 14) = 63.515, 𝑝 < .01).

.3. Discussion

As shown in Fig. 15, the subjective rankings of the error-prone
eature range from 1.71 (ID = 0.848) to 4.57 (ID = 2.888). The
ubjective rankings of the speed range from 2 (ID = 2.888) to 4.64
ID = 0.848). The subjective rankings of the ease of use range from
.64 (ID = 2.888) to 4.85 (ID = 0.848). Post hoc analysis shows that
ost of the pairwise comparisons are significantly different (𝑝 < .01).
he results of subjective rankings for different IDs are consistent with
he evidence of task completion time and error rate. The ranking of the
rror-prone feature increases as the index of difficulty increases. On the
ther hand, the ranking of the speed factor decreases as the index of
ifficulty increases.

On the other hand, since the definition of the index of difficulty
ID) involves only two factors (i.e., distance and target width), we
lso investigate the participants’ performances in different directions.
s shown in Fig. 11, the completion time of different IDs ranges from
074 ms (ID = 0.848) to 2300 ms (ID = 2.888). As shown in Fig. 16,
or the directions, the completion time ranges from 1602 ms (270◦) to
748 ms (180◦), with no main significant effect found, 𝐹7,84 = 1.399,
> .05. The 180◦ direction (1748 ms) is significantly higher than the
70◦ direction (1602 ms) (𝑝 = .034). We also illustrate the impact of
he directions on the error rate in Fig. 17. The error rates range from
.78% (45◦) to 5.56% (180◦), with no main significant effect found,
2(7, N = 14) = 7.126, 𝑝 = .416.

Furthermore, there are several important values in fitting Fitts’ law,
ncluding intercept, slope, and throughput. For different directions, the
argest slope occurs in the 180◦ direction, while the smallest one occurs
n the 90◦ direction. This indicates that, in the 180◦ direction, the time
eeded for children to perform mid-air selection could increase quickly
12
ith the increase of ID. While in the 90◦ direction, the time needed for
hildren to perform mid-air selection increases relatively slowly with
he increase of ID. Interestingly, although the average completion time
n the 180◦ direction is obviously larger, it has the smallest value of
ntercept. This result could be due to two main reasons. First, it is
ompensation for the high slope estimated by the linear regression.
econd, it could be also caused by the natural starting posture of the
articipants. We observe that the participants tend to have their right
ands heading to left before starting the trial, which leads to a faster
eaction time to the target on the left side than that on the right
ide. For the throughput, it is obvious that in different directions, the
P in the 180◦ direction is generally smaller than those in the other
irections, and the TP in the 270◦ direction is generally higher than
hose in the other directions. The above results suggest that children’s
ndex of performance in the 180◦ direction is the worst and the best in
he 270◦ direction.

For the two studied age groups (6–8 ages, and 9–12 ages), we did
ot find a statistically significant difference between slopes. In terms of
he intercept, the 6–8 age group has a larger intercept than the 9–12 age
roup. This indicates that it might take more reaction time for younger
hildren to perform this task. In sum, in terms of the throughput, the
–12 age group performs obviously better than the 6–8 age group.

. Design implications

Based on the empirical evidence in this study, we derive the fol-
owing user interface design implications for children involving mid-air
esture interaction:

1. The number of mid-air menu items had the greatest impact on
hildren’s performance. Children in both age groups had low error rates
≤1%) when using 4-item and 8-item menus. In contrast, children took

longer time and had higher error rates on the 16-item menu, but the
older children had significantly lower selection error rates than the
younger children. In the real-world design environment, user interfaces
involving pie menu tasks must strike a balance between functionality
and usability. Increasing the number of pie menu items would enhance
the functionality of the interface, but would also make it more difficult
and error-prone for child users to access these items. In particular,
children have a significantly higher error rate in 16-item menus than
adults. An informal analysis of the menu widths of popular applications
by Bailly et al. (2008) showed that a quarter of them had more than
16 items. Perhaps in order to accommodate too many menu functions,
adults may choose to use 16-item menus without creating a poor
experience, but it is not appropriate to use 16-item menus in a child-
oriented pie menu design. For children, the threshold for functionality
and usability balance in a full 360◦ pie menu is 8 menus. If a pie
menu must contain more than 8 items, designers should give special
consideration to the reduced accuracy of selection for younger children.

2. In general, children performed the pie menu task more accurately
in the upward (90◦) and downward (270◦) directions, followed by
directions closer to the north and south (67.5◦, 112.5◦, 292.5◦, etc.).
The results of fitting Fitts’ law model showed that children had the
worst performance index in the 180◦ direction. It can be seen that
children show the same characteristics in controlling arm movements:
accurate control of movement during up and down swings, slow and
cautious swings in the left direction, and tend to be random and fast
for swings in the right direction. Based on these observations, designers
should place objects that require higher operational precision in the
up and down directions. Some convenient operations that need to
be performed quickly or objects that need to be accessed as soon as
possible can be placed on the front right side, while the front left side is
suitable for some operations that are not frequently used or need to be
performed carefully. However, it should be noted that this conclusion
may be affected by the fact that all experimental participants are right-
handed, and designers should take it into account in the actual design
work.
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Fig. 15. Subjective rankings of all the participants for different IDs. Error bars indicate the standard errors.
Fig. 16. Completion times for all child participants in different directions. Error bars indicate the standard errors.
Fig. 17. Error rates for all the child participants in different directions. Error bars indicate the standard errors.
3. The Fitts’ law model is well-fitted and can be applied to chil-
dren of different age groups and different orientations of upper limb
movements. The Fitts’ law and corresponding metrics, such as ID and
throughput, can be used as key references when designing interactive
interfaces related to children’s upper limb movements. We observed no
significant difference in the time to complete the goal-directed task
13
between the two age groups of children in the second experiment.
However, completion time and ID showed an approximately linear rela-
tionship. Thus, designers can reduce the completion time by carefully
designing IDs. Meanwhile, we found a stepwise relationship between
the error rate and IDs. When IDs ≤ 1.648, the error rate was smaller
for all children and lower for participants aged 6–8 years than for those
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aged 9–12 years. When IDs ≥ 2.070, error rates increased significantly
for all children and participants aged 9–12 years performed better than
those aged 6–8 years. Designers should be aware of this difference
when designing systems for children of different ages. And our findings
provide a reference on ID design from which designers can learn to
reasonably design target widths and distances to control IDs to achieve
the desired effect.

According to the above design implications, we discuss several
possible task scenarios and design prototypes for children’s mid-air
gesture interactions as follows:

1. Menu components for mid-air gesture interaction
Mid-air gesture interaction has already made a splash in smart

homes, virtual reality, and somatic games, and is gradually being
embraced by children. As an important part of the somatosensory
system, the design of the menu directly affects the ease of operation
for child users. Our findings provide guidance for designing more child-
friendly menu components for mid-air gesture interaction systems. Here
we provide some prototype designs of child-oriented mid-air gesture
interaction menus, containing the more common pie, ring, and radial
layout menus (Fig. 18(a–c)). According to the aforementioned design
implication #1, the maximum number of items that suit for children in
such menus is 8. Also, to balance the functionality and efficiency of the
menus, we believe that 8 items are appropriate. Fig. 18(d–f) shows the
morphing design of these 3 types of regular menus and demonstrates
how our findings and design implications provide guidance for the
design of such menus. In the future, designers can flexibly apply our
findings to design child-oriented mid-air gesture interaction menus
based on practical needs. According to the experimental results and the
design implication #2, children’s accuracy and offset in eight different
directions vary widely, so designers can cut the menu into eight un-
equal parts to accommodate children’s arm movement characteristics.
For example, children’s movement in the left direction has a larger
offset and shows instability, while children’s arm movement in the right
direction is fast but has a high error rate, and the menu design can
appropriately increase the area of the left and right button selection
area. At the same time, in the pie and ring-shaped menus, the offset of
the up and down is small and the accuracy is better, then the selection
area in these two directions is allowed to be compressed appropriately
according to the actual situation. According to the aforementioned
design implication #3, the designer can adjust the distance from the
center of the layout circle to the target, in addition to the selection area
of the target, to improve the speed and accuracy of children’s operation.
As illustrated in Fig. 18(f), since children move at a relatively short
distance in the left and right directions, the designer can move the
targets in these two directions toward the center of the layout circle
to facilitate children’s hands to capture the targets quickly.

2. Scene design of mid-air gesture interaction games for children
Somatic games are children’s favorite gestural interaction systems.

The interaction interface is very important, and our study can provide
guidance for the design of the game interface. Game designers can
better design the size and placement of game props to make it easier
for children to choose, or set different levels of difficulty for the
game accordingly. For example, in capture or beat games, children
need to swing their arms to accurately reach the target object. Ex-
periment 1 yielded data on the maximum range of children’s upper
limb movements in different directions, error rates, etc., according to
which designers can set the directional arrangement of game props.
The influence of the number of directions on children’s upper limb
movement performance is very significant, and the difficulty of the
game can be adjusted by increasing or decreasing the direction of the
props. The maximum range of the children’s arm movements is also an
important reference for the layout of props, for example, the movement
range of children in the up and down direction is about 43 to 44 cm,
and the left and right directions are smaller, about 40 to 42 cm, and
these data can be referred to determine the distance of prop placement
to improve the ease of operation of the game. In addition, our work
14
Fig. 18. Pie, ring and radial layout menu prototypes. Note that we highlight each pair
of adjacent items in two colors (black and gray) to ensure them distinguishable.

provides the relationship between the ID index (determined by width
and distance) and children’s target capture performance. Designers can
draw on the suggestions of the design implications #3 to control the
size of the ID index of the game task to achieve the desired game effect,
for example, if the distance to the target is 160 pixels and the width
of the target is 100 pixels, the ID index is 1.379, which is easier for
children. To increase the difficulty, the distance to the target can be
increased or the size of the target can be reduced appropriately.

6. Limitations

There are certain limitations in our current study. In our current
experiments, the number of children in each age group was small
(7 or 10 in each group), which may have biased our results toward
individual performances. And, the lack of significant differences be-
tween age groups exhibited by some experimental results may also be
influenced by small samples. In the future, we will increase the number
of children in each age group to further investigate more general
differences in performance between different age groups. In addition,
the design prototypes provided in this study are preliminary without
detailed considerations for specific scenarios. Our current work only
discusses how the design implications can be applied to game scenarios.
In the future, we plan to design and evaluate more applications and
gesture interaction widgets for children and explore diverse application
scenarios to demonstrate the applicability of this research.

7. Conclusion and future work

We study children’s motor behavior of mid-air upper limb move-
ment in this paper. We found that the 8-item menu offers the most
suitable division scheme for children, balancing capacity and accuracy.
In spatial orientation, children move most accurately in the up (90◦)
and down (270◦) directions, followed by the due right and downright
directions (0◦ and 315◦) with small offsets and low error rates, while
the directions near the left side (135◦, 180◦, and 225◦) show poor
stability and accuracy. The completion time in different directions can
be well predicted by the index of difficulty of target capture tasks in the
Fitts’ law model. The accuracy of younger children in fine movements,
such as 16-item menus or target acquisition tasks with higher indexes
of difficulty, is significantly worse than that of older children, although
the two age groups perform similarly to other motor tasks. When
completing rough movements like waving in 4- or 8-item menus and
lower-ID target acquisition tasks, younger children surprisingly perform
even faster than older children.
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The concerns regarding the spatial constraint design of mid-air
gestures of upper limb movement for children include the accuracy in
performing upper limb movement and the range of movement. In the
design of interactive systems for children, the gesture of waving arms
in different directions can follow the results of our first experiment in
this paper. We suggest that designers place the most important items
in the up-and-down direction, followed by the left–right direction, and
lastly in the other directions, in order to enable most children to use
upper limb movement accurately and effectively to reach the target.
The results of our second experiment inspire the designers to place the
selection items within the optimal distance as much as possible with
proper sizes.

In the future, we plan to expand our current work in two aspects.
First, we will increase the number of children in each age group to
generalize the performance differences between the two age groups.
Second, we are interested in designing and evaluating more applica-
tions of spatial motion-based interface widgets for children to enhance
the utility of our research.
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